Отбора правила - Definition. Was ist Отбора правила
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Отбора правила - definition

Отбора правила; Магнитно-дипольный переход

Отбора правила         

правила, определяющие возможные Квантовые переходы для атомов, молекул, атомных ядер, взаимодействующих элементарных частиц и др. О. п. устанавливают, какие квантовые переходы разрешены (вероятность перехода велика) и какие запрещены - строго (вероятность перехода равна нулю) или приближённо (вероятность перехода мала); соответственно О. п. разделяют на строгие и приближённые. При характеристике состояний системы с помощью квантовых чисел О. п. определяют возможные изменения этих чисел при переходе рассматриваемого типа.

О. п. связаны с симметрией квантовых систем, т. е. с неизменностью (инвариантностью) их свойств при определённых преобразованиях, в частности координат и времени, и с соответствующими сохранения законами (См. Сохранения законы). Переходы с нарушением строгих законов сохранения (например, энергии, импульса, момента количества движения, электрического заряда и т.д. замкнутой системы) абсолютно исключаются.

Для излучателей квантовых переходов между стационарными состояниями атомов и молекул очень важны строгие О. п. для квантовых чисел J и mj, определяющих возможные значения полного момента количества движения М и его проекции Mz по правилам квантования: , (ħ - Планка постоянная, J и mJ - целые или полуцелые числа, причём mJ = J, J - 1,......, - J; см. Квантовые числа). Эти правила связаны с равноправием в пространстве всех направлений (для любой точки - сферическая симметрия) и всех направлений, перпендикулярных выделенной оси z (аксиальная симметрия), и соответствуют сохранению момента количества движения и его проекции на ось z. Из законов сохранения полного момента количества движения и его проекции для системы, состоящей из микрочастиц и из испускаемых, поглощаемых и рассеиваемых фотонов, следует, что при квантовом переходе J и mJ могут изменяться в случае электрического и магнитного дипольных излучений (см. Излучение электромагнитное) лишь на 0, ±1, а в случае электрического квадрупольного излучения (а также в случае комбинационного рассеяния света (См. Комбинационное рассеяние света)) - на 0, ±1, ±2.

Другое важное О. п. связано с законом сохранения полной чётности (См. Чётность) для изолированной квантовой системы (этот закон нарушается лишь слабым взаимодействием (См. Слабые взаимодействия) элементарных частиц). Квантовые состояния атомов, всегда имеющих центр симметрии, а также тех молекул и кристаллов, которые имеют такой центр, делятся на чётные и нечётные по отношению к пространств. инверсии (отражению в центре симметрии, т. е. к преобразованию координат х' -х, у' → -у, z' → -z); в этих случаях справедлив т. н. альтернативный запрет для излучательных квантовых переходов: для электрического дипольного излучения запрещены переходы между состояниями одинаковой чётности (т. е. между чётными или между нечётными состояниями), а для дипольного магнитного и квадрупольного электрического излучений (и для комбинационного рассеяния) запрещены переходы между состояниями различной чётности (т. е. между чётными и нечётными состояниями. В силу этого запрета можно наблюдать, частности в атомных спектрах астрономических объектов, линии, соответствующие магнитным дипольным и электрическим квадрупольным переходам, обладающим очень малой вероятностью по сравнению с дипольными электрическими переходами (т. н. запрещённые линии (См. Запрещенные линии)).

Наряду с точными О. п. по J и mJ существенны приближённые О. п. при дипольном излучении атомов для квантовых чисел, определяющих величины орбитальных и спиновых моментов электронов и проекций этих моментов. Например, для атома с одним внешним электроном азимутальное квантовое число l, определяющее величину орбитального момента электрона Ml M 2l = ħ2 l (l + 1), может изменяться на ± 1 (Δl = 0 невозможно, т.к. состояния с одинаковыми l имеют одинаковую чётность: они чётные при чётном l и нечётные при нечётном l). Для сложных атомов квантовое число L, определяющее полный орбитальный момент всех электронов, подчинено приближённому О. п. ΔL = 0, ±1, а квантовое число S, определяющее полный спиновый момент всех электронов (и Мультиплетность κ = 2S + 1), - приближённому О. п. ΔS = 0, справедливому, если не учитывать Спин-орбитальное взаимодействие. Учёт этого взаимодействия нарушает последнее О. п., и появляются т. н. интеркомбинационные переходы, вероятности которых тем больше, чем больше атомный номер элемента.

Для молекул имеются специфические О. п. для электронных, колебательные и вращательные молекулярных спектров (См. Молекулярные спектры), определяемые симметрией равновесных конфигураций молекул, а для кристаллов - О. п. для их электронных и колебательных спектров, определяемые симметрией кристаллической решётки (см. Спектроскопия).

В физике элементарных частиц, кроме общих законов сохранения энергии, импульса, момента количества движения, имеются дополнительные законы сохранения, связанные с симметриями фундаментальных взаимодействий частиц - сильного, электромагнитного и слабого. Процессы превращения элементарных частиц подчиняются строгим законам сохранения электрического заряда Q, барионного заряда (См. Барионный заряд) В и, по-видимому, лептонного заряда (См. Лептонный заряд) L, которым соответствуют строгие О. п.: ΔQ = ΔВ = ΔL = 0. Существуют также приближенные О. п. Из изотопической инвариантности (См. Изотопическая инвариантность) сильного взаимодействия следует О. п. по полному изотопическому спину I, ΔI = 0; это О. п. нарушается электромагнитными и слабыми взаимодействиями. Для сильного и электромагнитного взаимодействий справедливо О. п. по странности S, ΔS = 0; слабые взаимодействия протекают с нарушением этого О. п.: |ΔS| = 1. Как было отмечено выше, в процессах, вызванных слабым взаимодействием, нарушается также закон сохранения пространственной чётности, справедливый для всех др. видов взаимодействий. Имеются и др. О. п. См. Элементарные частицы.

Об О. п. в ядерной физике см. Ядерная спектроскопия.

М. А. Ельяшевич.

ОТБОРА ПРАВИЛА         
определяют возможные квантовые переходы для атомов, молекул, атомных ядер, элементарных частиц и т. п.; обычно формулируются как допустимые изменения квантовых чисел, характеризующих систему. Правила отбора связаны с симметрией квантовых систем и, следовательно, с соответствующими законами сохранения.
Правила отбора         
Пра́вилами отбо́ра в спектроскопии называют ограничения и запрет на переходы между уровнями квантомеханической системы с поглощением или излучением фотона, наложенные законами сохранения и симметрией.

Wikipedia

Правила отбора

Пра́вилами отбо́ра в спектроскопии называют ограничения и запрет на переходы между уровнями квантомеханической системы с поглощением или излучением фотона, наложенные законами сохранения и симметрией.